Monatshefte für Chemie 116, 711-717 (1985)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1985

Zweikern-Komplexe des Wolframs und Molybdäns mit zentraler $\{XMS_2MX\}^{2+}$ -Einheit (X = O, S) und S_2^{2-} - bzw. S_4^{2-} -Liganden

Achim Müller*, Michael Römer, Christian Römer, Uta Reinsch-Vogell, Hartmut Bögge und Uwe Schimanski

Fakultät für Chemie, Universität Bielefeld, D-4800 Bielefeld 1, Bundesrepublik Deutschland

(Eingegangen 19. Oktober 1984. Angenommen 24. Oktober 1984)

Binuclear Tungsten and Molybdenum Complexes with Central $\{XMS_2MX\}^{2+}$ Units (X = O, S) and S_2^{2-} or S_4^{2-} Ligands

The synthesis and crystal structures of the compounds $[PPh_4]_2[W_2S_{12}] \cdot 0.5 DMF$, $[PPh_4]_2[W_2O_2S_{10}] \cdot 0.5 DMF$, $[PPh_4]_2[W_2S_{10}] \cdot 0.5 DMF$, $[PPh_4]_2[Mo_2OS_7] \cdot CH_3CN$, and $[PPh_4]_2[Mo_2O_2S_{10}]$ are reported.

(Keywords: Tungsten complexes; Molybdenum complexes; Polythioanions; Disulfur complexes; Polysulfido complexes; X-ray crystal structure analysis)

Einkernige Thiometallate der Übergangsmetalle zeigen interessante Reaktionen. Sie dienen z. B. als Ausgangssubstanzen zur Darstellung von homo-¹⁻⁵ und heteronuklearen³ Multimetall-Sulfido-Komplexen. In dieser Mitteilung wird über einige Zweikern-Komplexe des Wolframs und Molybdäns berichtet, deren Bildungsweise zum Verständnis der angesprochenen Chemie von Bedeutung ist. "Reine" Zweikern-Sulfido-Wolframate waren bisher unbekannt. Die Komplexe konnten durch Erhitzen von Lösungen der einkernigen Thiometallate (z. T. in Gegenwart von Schwefel) erhalten und durch Einkristall-Röntgenstrukturanalyse charakterisiert werden. In Tab. 1 sind die wichtigsten Daten der Kristallstrukturanalysen und in Tab. 2 die Bindungswinkel aller Komplexe zusammengefaßt.

Verbindung	2	<u>3</u> nī	4 77	5	<u>6</u> Pī
	rı	F1	Г I	r I	E 1
a[pm]	1083.2(8)	1192.7(7)	1049.4(4)	1084.8(3)	1205,5(2)
b[pm]	1164.5(7)	1327.3(7)	1165.8(4)	1220.7(3)	1313,5(2)
c[pm]	2250.6(21)	1816.9(10)	2219.1(9)	1712.2(4)	1805.9(3)
α[⁰]	73.14(6)	93.81(4)	76.11(3)	79.73(2)	92,56(1)
β[[°]]	87.49(7)	91,58(5)	86.10(3)	72.97(2)	91.78(1)
۲[°]	79.98(5)	109,93(4)	78.26(3)	83.83(2)	110.73(1)
V [10 ⁶ pm ³]	2675.3	2694.0	2579.8	2129.4	2668,2
Z	2	2	2	2	2
Zahl der unabh. Reflexe					
F _o >3.92σ(F _o)	5562	8397	6445	7183	4905
Zahl der Variablen	257	255	226	196	327
$R=\Sigma$ F_o - F_c / Σ F_o	0.113	0.070	0.104	0,078	0.135

Tabelle 1. Ergebnisse der Kristallstrukturanalysen^a

a <u>2</u>: [PPh₄]₂[W₂S₁₂] 0.5 DMF,

<u>5</u>: [PPh₄][NEt₄][Mo₂OS₇] CH₃CN,

<u>3</u>: [PPh₄]₂[W₂0₂S₁₀]·0.5 DMF,

<u>4</u>: [PPh₄]₂[W₂S₁₀]'0.5 DMF,

<u>6</u>: $[PPh_4]_2[Mo_2O_2S_{10}].$

Beim Erhitzen einer Lösung von $WS_4^{2-}(1, PPh_4^+-Salz)$ in organischen Lösungsmitteln (wie *DMF*, Acetonitril und Dichlormethan) in Gegenwart von Schwefel bildet sich $[W_2S_{12}]^{2-}$. Nach Zugabe von Diethylether zur Reaktionslösung fällt dunkelrotes $[PPh_4]_2[W_2S_{12}]\cdot 0.5 DMF$ (2) aus (Struktur und Bindungsabstände in Abb. 1 a). Durch weitere Zugabe von Diethylether zur Mutterlauge gelingt die Fällung der isostrukturellen gelb-orange-farbenen Dioxoverbindung $[PPh_4]_2[W_2O_2S_{10}]\cdot 0.5 DMF$ (3) (Bindungsabstände in Tab. 3). Beim Erhitzen von 1 (NH_4^+-Salz) in *DMF* (ohne Zugabe von Schwefel) entsteht wie bereits berichtet als Hauptprodukt $[PPh_4]_2[W_3S_9]^1$. Versetzt man jedoch die erhitzte Reaktionslösung mit Nitromethan und filtriert nach Abkühlung auf Zimmertemperatur $[PPh_4]_2[W_3S_9]$ ab, so lassen sich aus der Mutterlauge nach Zusatz von Ether sehr geringe Mengen hellroter Kristalle der Verbindung $[PPh_4]_2[W_2S_{10}]\cdot 0.5 DMF$ (4) (Struktur des komplexen Anions in Abb. 1 b) neben roten Kristallen von $[PPh_4]_2[W_3O_8(DMF)]^6$ isolieren.

Schwarzes $[PPh_4][NEt_4][Mo_2OS_7] \cdot CH_3CN$ (5) (Struktur des komplexen Anions in Abb. 1 c) wird aus einer Lösung von $(NH_4)_2MoS_4$ in Acetonitril/Ethanol, die mit einer äquimolaren Menge von $CoSO_4 \cdot 7 H_2O$

Abb. 1. ORTEP-Plot der komplexen Anionen $[W_2S_{12}]^{2-}(a)$, $[W_2S_{10}]^{2-}(b)$ und $[Mo_2OS_7]^{2-}(c)$ mit der zentralen $\{XMS_2MX\}^{2+}$ -Einheit (*syn*-Form, X = O bzw. S) (Bindungsabstände in [pm])

und einem Überschuß von NaBH₄ versetzt wurde, in Form schwarzer Kristalle erhalten. Läßt man eine Mischung von $[PPh_4]_2MoOS_3$ und Schwefel bei Raumtemperatur in Dichlormethan/Benzol längere Zeit (ca. 3 Wochen) stehen, so bilden sich neben $(PPh_4)_2[MoOS_8]$ (orange)³ orange-rote Kristalle von $[PPh_4]_2[Mo_2O_2S_{10}]$ (6) (Bindungsparameter in Tab. 2 und 3).

In allen genannten Komplexen kommt die zentrale $\{XM^VS_2M^VX\}^{2+}$ -Einheit (M = W, Mo; X = O, S) vor. Diese enthält zwei über Schwefel verknüpfte Wolfram- oder Molybdänatome sowie terminal gebundene Soder O-Atome. An die Metallatome sind weiterhin zweizähnige S_4^{2-} - bzw. S_2^{2-} -Liganden koordiniert, so daß jeweils jedes Wolfram- bzw. Molybdänatom (verzerrt) quadratisch-pyramidal von Chalkogenatomen umgeben ist. Die MS_4 -Ringsysteme haben annähernd Halbsessel- bzw. Briefumschlag-Konformation (Torsionswinkel: Tab. 2). Der Magnetismus (**2**—**6** sind wie auch $W_3S_9^{2-}$ diamagnetisch) und der kurze M 1-M 2-Abstand (M= Mo, W) sprechen für das Vorliegen von Metall-Metall-Bindungen.

Allen angegebenen Reaktionen ist gemeinsam (abgesehen von der, die zu 5 führt), daß formal S^{2—}-Liganden (der Thioanionen) Mo^{VI} bzw. W^{VI} reduzieren. Tetrasulfido-Liganden entstehen offensichtlich durch Reaktion von koordiniertem S^{2—} mit (dem zugesetzten) Schwefel.

Bindungswinkel	[w ₂ s ₁₂] ²⁻	[w202s10] ²⁻	[w ₂ s ₁₀] ²⁻	[Mo ₂ 05 ₇] ²⁻	[Mo202810] ²⁻
S1 - M1 - S2	102.1(3)	101.4(1)	103.5(2)	103.0(1)	100.4(2)
S1 - M1 - X3	105.2(3)	106.0(3)	106.3(3)	108.5(1)	107.1(6)
S1 - M1 - S5	147.9(3)	151.1(1)	135.0(3)	132.6(1)	149.9(2)
S1 - M1 - S6	73.9(3)	76.0(1)	92.7(3)	89.7(1)	75.5(3)
S2 - M1 - X3	109.3(3)	108.5(4)	108.8(3)	108.6(1)	108.3(6)
S2 - M1 - S5	76.0(3)	77.6(1)	88.0(3)	89.9(1)	77.4(2)
S2 - M1 - S6	139.9(3)	142.2(1)	133.7(3)	131.7(1)	140.7(3)
X3 - M1 - 85	105.5(3)	101.5(3)	110.8(3)	110.0(1)	102.0(6)
X3 - M1 - S6	110.2(3)	108.3(4)	107.6(4)	110.9(1)	110.3(6)
S5 - M1 - S6	87.0(3)	87.2(1)	52.4(4)	51.1(3)	87.3(3)
S1 - M2 - S2	100.8(3)	101.0(1)	100.2(2)	101.9(1)	102.6(2)
S1 - M2 - X4	106.6(3)	108.6(4)	107.1(3)	108.2(3)	107.5(6)
SI - M2 - S7	147.0(3)	140.7(1)	147.4(3)	132.7(1)	141.9(3)
S1 - M2 - S8	76.5(3)	78.1(1)	73.9(3)	90.8(1)	77.0(3)
S2 - M2 - X4	109.3(3)	106.6(3)	108.3(3)	109.3(3)	106.1(6)
S2 - M2 - S7	77.6(3)	76.1(1)	77.8(2)	89.9(1)	76.4(3)
S2 - M2 - S8	139.7(3)	150.4(1)	140.2(3)	132.5(1)	149.3(3)

Tabelle 2. Bindungs-, Torsions- und Dihedralwinkel (in [°]) für die komplexen Anionen in $2-6^{a}$

Tabelle 2 (Fortsetzung)

X4 - M2 - S7	104.9(3)	109.6(4)	104.2(3)	110.6(3)	109.2(6)
X4 - M2 - S8	110.0(3)	101.5(3)	111.1(3)	109.6(3)	103.2(6)
S7 - M2 - S8	83.7(3)	86.0(1)	86.9(3)	51.2(1)	85.3(3)
M1 - Sİ - M2	75.4(2)	75.5(1)	76.0(2)	75.2(1)	75.1(2)
MI - S2 - M2	75.1(2)	75.4(1)	75.7(2)	75.4(1)	75.9(2)
M1 - S5 - S11	103.8(4)	104.9(2)			102.0(4)
M1 - S5 - S6			63.7(4)	64.6(1)	
M1 - S6 - S12	112.8(5)	111.7(2)			110.5(4)
MI - S6 - S5			63.9(4)	64.3(1)	
S5 - S11 - S12	100.6(5)	99.7(3)			98.0(5)
S11 - S12 - S6	101.3(6)	100.9(3)			101.4(5)
M2 - S7 - S9	105.8(6)	111.4(2)	104.4(4)		113.0(4)
M2 - S7 - S8				64.8(1)	
M2 - S8 - S10	114.6(6)	103.4(2)	111.9(4)		106.1(4)
M2 - S8 - S7		<u> </u>		64.0(1)	
S7 - S9 - S10	101.8(10)	101.0(3)	99.5(5)		100.6(6)
S9 - S10 - S8	104.0(9)	98.7(3)	101.5(5)		99.1(5)
Torsionswinkel ¹)				
- M1 - S5 -	39.5	36.0			42.7
- S5 - S11 -	-61.0	-60.8			-65.1
- 511 - 512 -	51.3	54.8			55.6
- S12 - S6 -	-24.0	-30.6			-26.1
- S6 - M1 -	-9.1	-3.3			-9.7
~ м2 - S7 -	-43.6	-8.7	-41.2		-2.7
- S7 - S9 -	58.5	-26.6	62.4		-31.5
- \$9 - \$10 -	-41.1	54.9	-51.2		54.7
~ S10 - S8 -	10.6	-64.9	23.5		-61.2
- 58 - M2 -	19.2	41.4	10.1		35.8
Dihedralwinkel					
MI(SIS))MO C	30. 6	30 7	25 /	25.2	7a 2
FILL 1 D 1 D 6 1116	JU . U	JU . 1	L J . M		

^aM = Mo, W; X = S, 0; Atombezeichnung von $[W_2O_2S_{10}]^{2^-}$ und $[Mo_2O_2S_{10}]^{2^-}$ entspricht der von $[W_2S_{12}]^{2^-}$ in Abb. 1. ^b Torsionswinkel in den MS₄-Ringen; es sind jeweils die beiden mittleren der vier den Torsionswinkel definierenden Atome angegeben. ^c Winkel zwischen den Flächennormalen der Flächen MI, S1, S2 und M2, S1, S2.

Tabelle 3. Bindungsabstände (in [pm]) der komplexen Anionen in 3 und 6 (die Geometrie der Anionen in 3 und 6 ist der des Anions in 2 sehr ähnlich, daher wurde auf die Wiedergabe eines ORTEP-Plots verzichtet)

		[w202s10] ²⁻	[Mo202810] ²⁻
Mi	- M2 ^a	285.6(1)	285.3(3)
Мl	- S1	234.8(3)	239.1(7)
M1	- \$2	231.2(4)	230.5(6)
Mł	- X3	171.6(8)	169.2(14)
Mł	- \$5	242.7(4)	241.4(7)
MI	- S6	242.1(5)	241.3(8)
M2	- S1	231.9(4)	229.1(7)
M2	- S2	235.6(3)	233.3(6)
M2	- X4	176.4(8)	168.9(17)
M2	- \$7	243.3(4)	245.8(8)
M2	- \$8	241.4(4)	242.6(8)
S6	- \$12	210.9(6)	208.9(12)
S11	- 512	201.1(8)	203.4(13)
S 5	- S11	207.1(8)	205.6(11)
S8	- S10	205.3(7)	207.9(12)
S9	- \$10	201.0(6)	201.3(14)
S 7	- S9	209.0(7)	207.5(12)

^a Bezeichnung entsprechend 2 in Abb. 1a; X = 0 bzw. S (vgl. Text).

Bei der "Redoxkondensation" von 1 zu $[W_2S_{10}]^{2-}$ muß sich der S_4^{2-} -Ligand aus dem Edukt WS_4^{2-} gebildet haben, da kein anderer "Schwefellieferant" in der Reaktionslösung vorhanden ist.

Von den genannten Komplexen lassen sich weitere Zweikern-Spezies ableiten, in denen S_2^{2-} - bzw. S_4^{2-} -Liganden durch andere Liganden ersetzt werden. Hierzu gehört z. B. der ebenfalls erhaltene neuartige Dreikern-Komplex

 $[[(S_2)OMo^VS_2Mo^VO(Mo^{VI}S_4)]^{2-}$, über den an anderer Stelle berichtet werden soll. Bezüglich der Koordinationsvielfalt von "Schwefel" ist das komplexe Anion 4 interessant, da es terminale und verbrückende S²⁻-Liganden sowie je einen S²⁻₂- und S²₄-Liganden enthält. Der entsprechende Mo-Komplex wurde bereits rein⁷ bzw. in einer Mischkristallverbindung⁸ mit $[Mo_2S_{12}]^{2-}$ (isostrukturell zu 2) dargestellt. Die Mischkristall-

Zweikern-Komplexe

verbindung wurde aus $(NH_4)_2[Mo_2(S_2)_6] \cdot 2H_2O^9$ erhalten⁸, die sich in reiner Form nach den Angaben bei ⁹ leicht darstellen läßt. (Die vor kurzem angegebene Darstellung in Lit.⁸ ist kompliziert.)

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie sowie dem Minister für Wissenschaft und Forschung (NRW) für finanzielle Unterstützung.

Literatur

- ¹ Königer-Ahlborn E., Müller A., Angew. Chem. **87**, 589 (1975); Angew. Chem. Int. Ed. Engl. **14**, 573 (1975); Müller A., Bögge H., Krickemeyer E., Henkel G., Krebs B., Z. Naturforsch. **379**, 1014 (1982).
- ² Rittner W., Müller A., Neumann A., Bäther W., Sharma R. C., Angew. Chem. 91, 565 (1979); Angew. Chem. Int. Ed. Engl. 18, 530 (1979); Müller A., Reinsch-Vogell U., Krickemeyer E., Bögge H., Angew. Chem. 94, 784 (1982); Angew. Chem. Int. Ed. Engl. 21, 796 (1982).
- ³ Müller A., Diemann E., Jostes R., Bögge H., Angew. Chem. **93**, 967 (1981); Angew. Chem. Int. Ed. Engl. **20**, 934 (1981).
- ⁴ Sécheresse F., Lefebvre J., Daran J. C., Jeannin Y., Inorg. Chem. 21, 1311 (1982).
- ⁵ Pan W. H., Leonowiez M. E., Stiefel E. I., Inorg. Chem. 22, 672 (1983).
- ⁶ Müller A., Hellmann W., Römer C., Römer M., Bögge H., Jostes R., Schimanski U., Inorg. Chim. Acta 83, L 75 (1984).
- ⁷ Clegg W., Christou G., Garner C. D., Sheldrick G. M., Inorg. Chem. 20, 1562 (1981).
- ⁸ Draganjac M., Simhon E., Chen C. T., Kanatzidis M., Baenziger N. C., Coucouvanis D., Inorg. Chem. **21**, 3321 (1982).
- ⁹ Müller A., Bhattacharyya R. G., Pfefferkorn B., Chem. Ber. 112, 778 (1979).